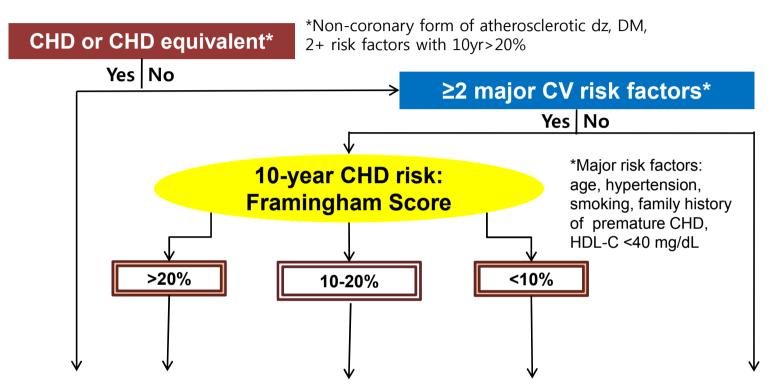
2012 international Conference on Diabetes and metabolism (ICDM)

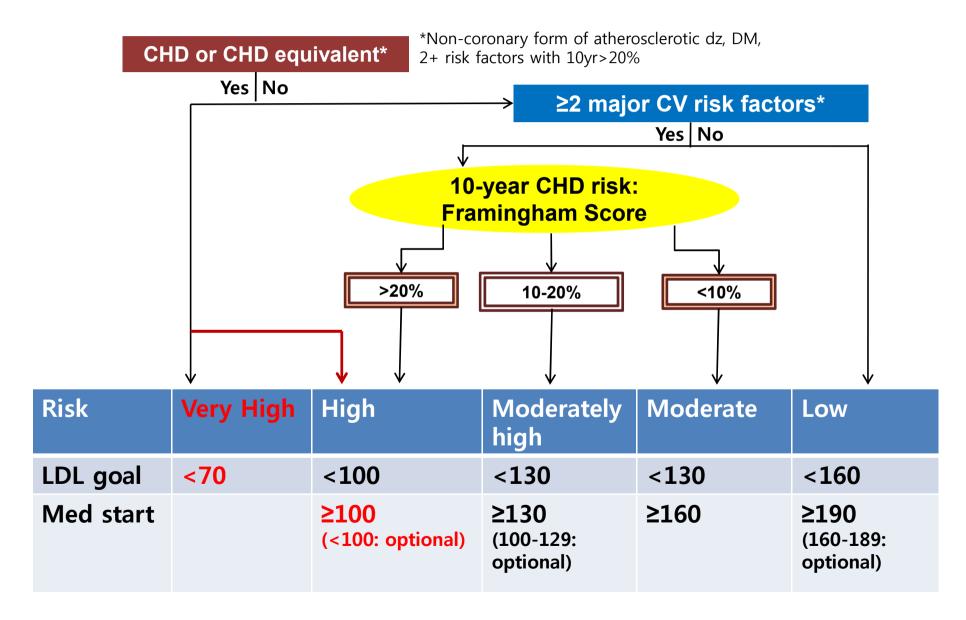
Review of guidelines for management of dyslipidemia in diabetic patients

Nan Hee Kim, MD, PhD

Department of Internal Medicine, Korea University College of Medicine


Contents

- Review of guidelines
 - 2001: National Cholesterol Education Program (NCEP) Adult treatment Panel III (ATP III)
 - 2004: NCEP ATP III Update
 - 2008: ADA/ACC (American College of Cardiology Foundation)
 - 2011: ESC/EAS (European Society of Cardiology/ European Atherosclerosis Society)
- Issue for NCEP ATP IV


2001 NCEP ATP III: LDL-C Goal Values

Risk	High	Moderately high	Moderate	Low
LDL goal	<100	<130	<130	<160
Medication start	≥ 130 (100-129: optional)	≥130	≥160	≥ 190 (160-189: optional)

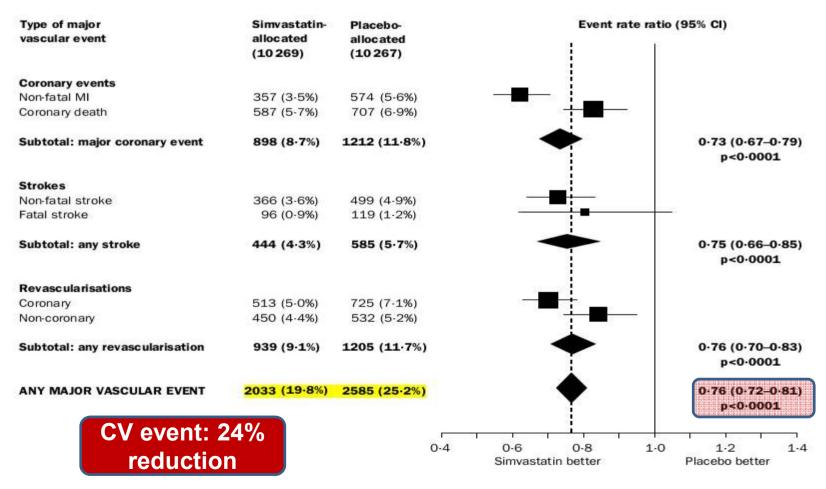
Very High Risk in updated ATP III

Established CVD plus

- Multiple major risk factors (especially diabetes)
- Severe and poorly controlled risk factors (especially continued smoking)
- Multiple risk factors of MetS (especially Tg ≥200, non-HDL-C ≥130, and HDL-C <40)
- Acute coronary syndrome

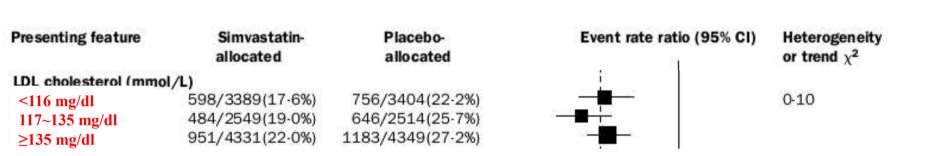
→ LDL-C goal <70 mg/dL

NCEP ATP III Update



- In high risk persons (10yr CHD risk >20%), LDL-C goal <100 mg/dL
 - − If LDL-C \geq 100mg/dL, LDL-lowering drug is indicated
 - If LDL-C <100mg/dL, LDL-lowering drug is an option
 - If high Tg or low HDL-C, consider fibrate or nicotinic acid with LDL-lowering drug
 - When Tg ≥200mg/dL, non-HDL-C is secondary target of therapy, with a goal 30mg/dL higher than LDL-C goal
- When LDL-lowering drugs are used, LDL-C levels should be reduced at least 30-40%

Rationale for LDL-C goal <70 mg/dL : Heart Protection Study



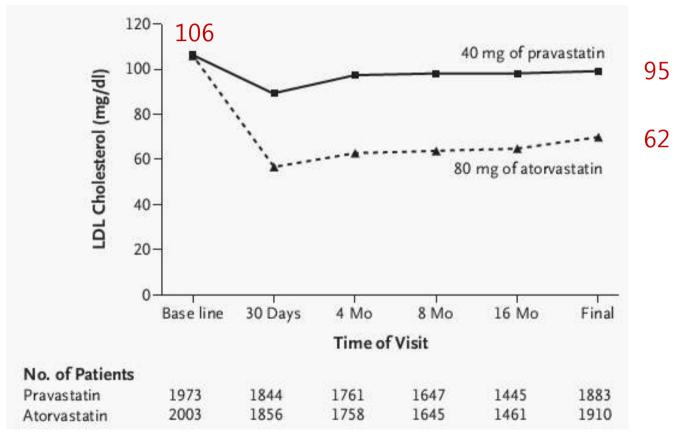
- CAD, other occlusive vascular disease, no vascular disease
- Simvastatin 40mg vs. placebo, N=20536

Lancet 2002; 360:7-22

Effect of CV risk reduction in subjects with baseline LDL-C < 130mg/dL

Even among 3,421 presenting with LDL <100 mg/dL, simvastatin Produced a reduction in risk about as great as that seen among those presenting with higher LDL-C concentrations (a quarter)

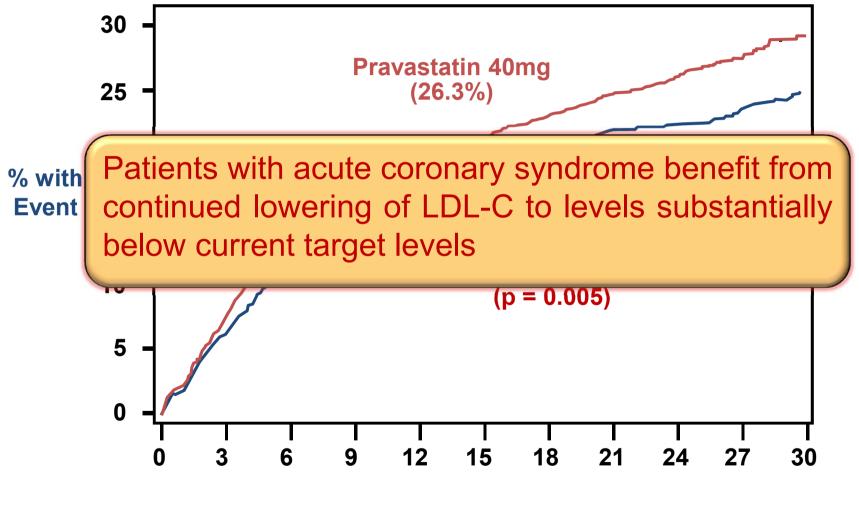
PROVE IT - TIMI 22



Intensive versus Moderate Lipid Lowering with Statins after Acute Coronary Syndromes

Pravastatin 40mg vs. atorvastatin 80mg in acute coronary syndrome N=4162

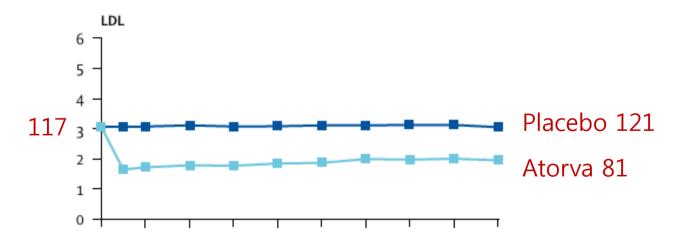
N Engl J Med 2004; 350:1495-1504



N Engl J Med 2004; 350:1495-1504

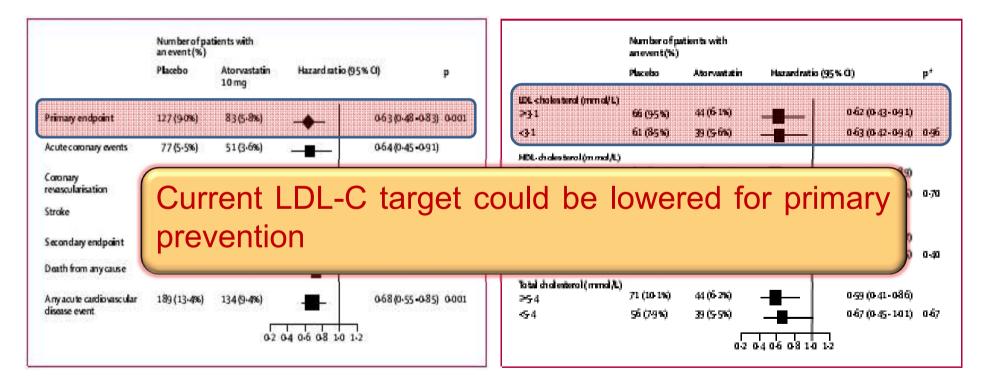
All-Cause Death or Major CV Events

Months of Follow-up


N Engl J Med 2004; 350:1495-1504

Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial

Helen M Colhoun, D John Betteridge, Paul N Durrington, Graham A Hitman, H Andrew W Neil, Shona J Livingstone, Margaret J Thomason, Michael I Mackness, Valentine Charlton-Menys, John H Fuller, on behalf of the CARDS investigators*


- T2DM without CVD and without high LDL-C, ≥1 risk factors
- N=2838
- Atorvastatin 10mg vs. placebo for primary prevention

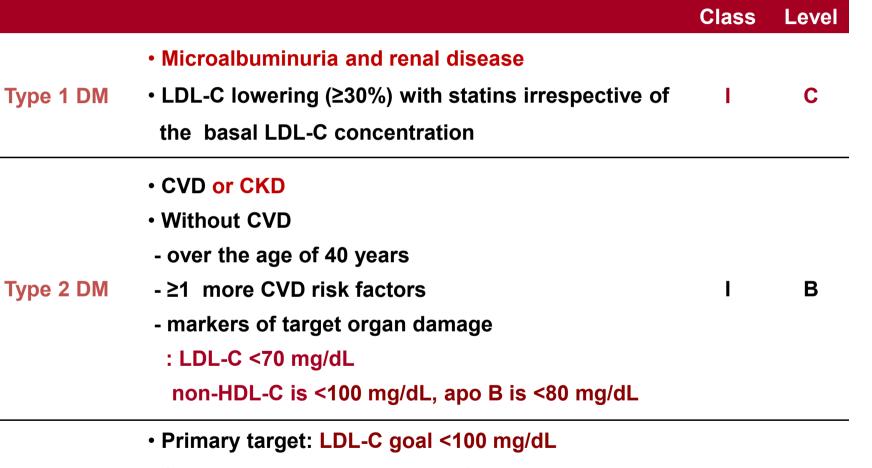
CARDS trial

- 36% reduction in major CV event
- 743 patients with baseline LDL-C <100mg/dl, 26% reduction in major CV event

2008 ADA and ACC Consensus Statement

	Goal Values (mg/dL)			
	LDL-C	Non-HDL-C	Аро В	
Highest Risk: • CVD or • DM with ≥1 major risk factor*	<70	<100	<80	
 High Risk: No CVD, no DM with ≥2 major risk factors DM with no major risk factors 	<100	<130	<90	

*Risk factor: smoking, hypertension, family history of premature CAD


ESC/EAS 2011 Guidelines: Lipid Targets

KOREA

More aggressive target for high-risk patients

		LDL-C	Non– HDL-C	Аро В
·		Primary Target	Seconda	ary Targets
	Documented CVD			<80 mg/dL
	Type 2 diabetes	~70 mg/dL		
Very high risk	Type 1 diabetes with target organ damage (such as microalbuminuria)	And/or ≥50% reduction	~100 mg/dL	
	≥ CKD stage 3	from baseline		
	A calculated 10-year risk SCORE ≥10%	Sustinit		
High risk	Markedly elevated single-risk factors (eg, familial dyslipidemias or severe hypertension)	~100 mg/dL	~130	<100
	A calculated 10-year risk SCORE ≥5% and <10% for fatal CVD		mg/dL	mg/dL
Moderate risk	SCORE is ≥1% and <5% at 10 years	~115 mg/dL	~145 mg/dL	Not defined

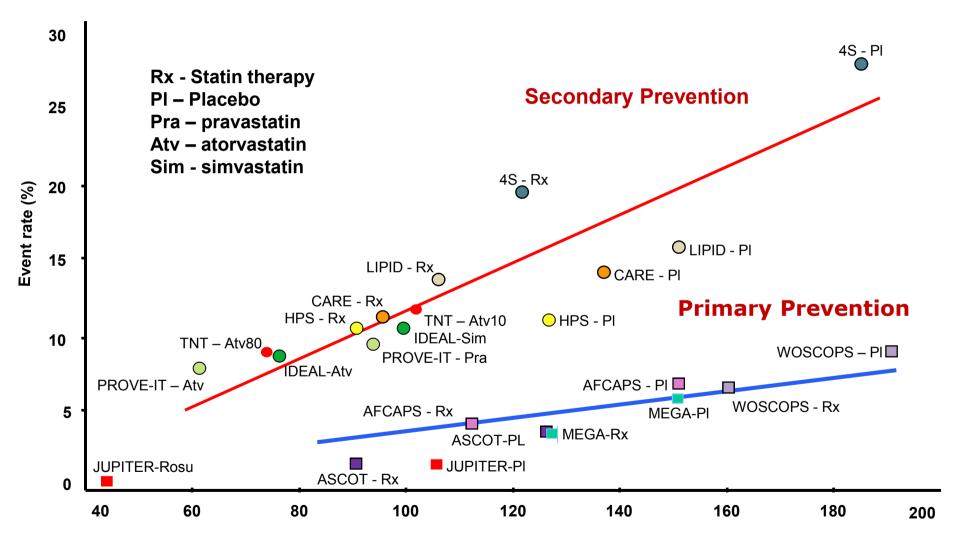
ESC/EAS 2011 Guidelines: Recommendations for treatment of dyslipidemia in diabetes

Type 2 DM• Secondary targets: Non-HDL-C <130 mg/dL and</th>IBapo B <100 mg/dL</td>

Issues for ATP IV

- LDL-C goals for primary and secondary prevention
- CVD risk assessment
- Alternative treatment targets:
 - Apo B, non HDL-C,LDL particle number, Lp-PLA2, Lp(a), hsCRP
- Direct targeting of HDL-C and triglyceride
 - Role of fibrates, niacin, omega-3 fatty acid

Issues for ATP IV



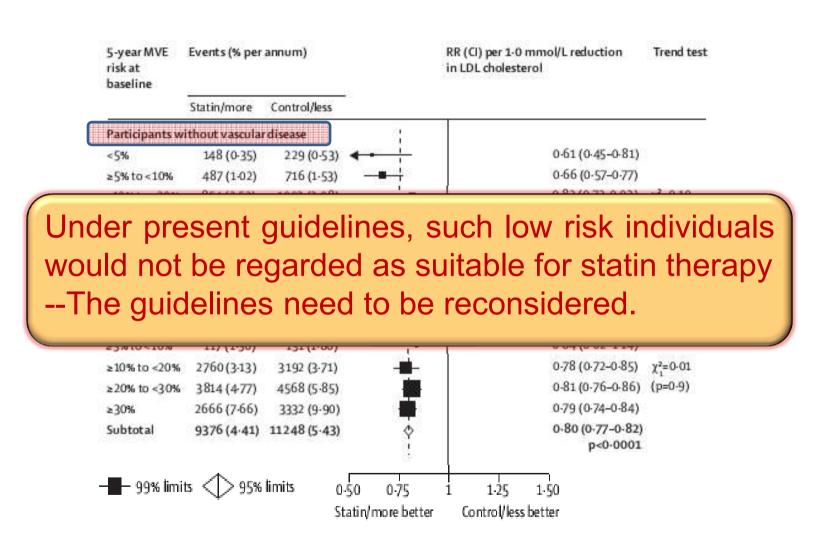
- LDL-C goals for primary and secondary prevention
- CVD risk assessment
- Alternative treatment targets:
 - Apo B, non HDL-C,LDL particle number, Lp-PLA2, Lp(a), hsCRP
- Direct targeting of HDL-C and triglyceride
 Role of fibrates, niacin, omega-3 fatty acid

On-treatment LDL-C is closely related to CHD events in statin trials – lower is better

KOREA

KOREA UNIVERSITY

LDL-C achieved mg/dL (mmol/L)



The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials

Cholesterol Treatment Trialists' (CTT) Collaborators*

- 22 trials of statin vs. control & 5 trials of more vs. less statin
- Subjects were separated into five categories of baseline 5-yr major vascular event risk (<5, 5~10, 10~20, 20~30, ≥30%)

Statin therapy reduces the major vascular events in low risk individuals

Lancet 2012; 380: 581-90

KOREA

Issues for ATP IV

- LDL-C goals for primary and secondary prevention
- CVD risk assessment
- Alternative treatment targets:
 - Apo B, non HDL-C,LDL particle number, Lp-PLA2, Lp(a), hsCRP
- Direct targeting of HDL-C and triglyceride
 Role of fibrates, niacin, omega-3 fatty acid

CVD risk assessment

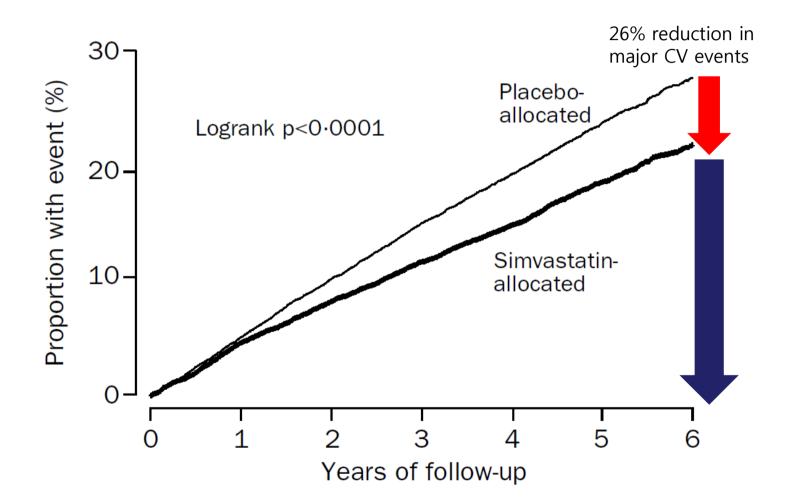
- Example: 56yr old women, without CV sx, ex-smoker (4yrs ago), no f/hx of MI or sudden cardiac death, BP 138/76 mmHg, FPG 109 mg/dl, TC 210mg/dl, HDL 42 mg/dl, Tg 201 mg/dl, has never taken any medication
- What is her risk for future CVD event?

Risk Score	Estimated Risk		
Framingham			
10-yr CHD risk score	2%		
Global CVD score	10%*		
Heart age/vascular age	73		
Reynolds	6%		
SCORE (fatal CVD)	1%-2%†		
QRISK	11%		
ASSIGN	14%		
Lifetime risk for CVD	39%		

Risk Score	Estimated Risk	
Framingham		
10-yr CHD risk score	2%	고려대학교 KOREA UNIVERSITY
Reynolds		
Negative FH, hsCRP 0.5 mg/l	2%	
Negative FH. hsCRP 3.0 mg/l	3%	
Negative FH, hsCRP 8.0 mg/l	4%	
Positive FH, hsCRP 0.5 mg/l	3%	
Positive FH, hsCRP 3.0 mg/l	5%	
Positive FH, hsCRP 8.0 mg/l	6%	
SCORE (fatal CVD)		
Country of low cardiovascular risk	1%	
Country of high cardiovascular risk	2%	
QRISK		
Negative FH, BMI <23 kg/m ²	6%	
Negative FH, BMI 23-32 kg/m ²	6%	
Negative FH, BMI ≥33 kg/m ²	7%	
Positive FH, BMI <23 kg/m ²	10%	
Positive FH, BMI 23-32 kg/m ²	11%	
Positive FH, BMI ≥33 kg/m ²	12%	
ASSIGN*		
Negative FH, SIMD <10	7%-8%	
Negative FH, SIMD 10-29	8%-10%	
Negative FH, SIMD ≥30	10%-15%	SIMD
Positive HH, SIMD <10	12%-13%	:Scottish Index of Multiple Deprivation
Positive FH, SIMD 10-29	13%-15%	
Positive FH, SIMD ≥30	15%-23%	
Lifetime risk for CVD	39%	J Am Coll Cardiol 2010; 55: 1169-77

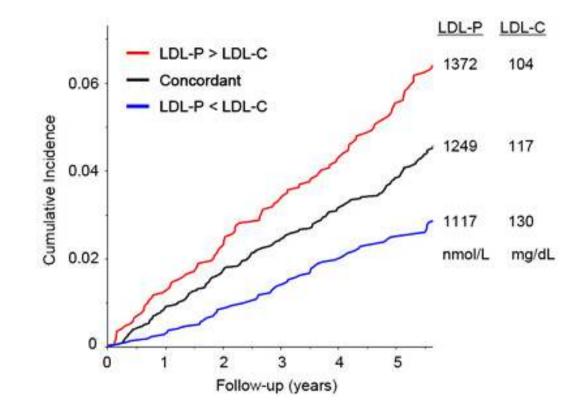
Newer CVD prediction algorithms

- Lifetime risk
- Composite endpoints (all CVD, PAD, stokes, heart failure, angina, revascularization..)
- Inclusion of family history, hs-CRP, HbA1c, social deprivation, BMI
- Vascular imaging
- Validation/calibration in other populations


Issues for ATP IV

- LDL-C goals for primary and secondary
 prevention
- CVD risk assessment
- Alternative treatment targets:
 - Apo B, non HDL-C,LDL particle number, Lp-PLA2, Lp(a), hsCRP
- Direct targeting of HDL-C and triglyceride
 Role of fibrates, niacin, omega-3 fatty acid

There is a still residual risk


Ann Intern Med, 2006;144;4;229-238 HPS Collaborative Group, Lancet 2002;360:7–22

Non-HDL-C and apoB

- Non-HDL-C: sum of LDL-C, VLDL, IDL
- ApoB: direct indication of total number of apoB containing lipoprotein particles (atherogenic particles)
- Stronger predictors of CVD mortality than LDL-C
- Independent predictor of CHD regardless of Tg level
- Performance to predict CVD for non-HDL-C and apoB, has been a point of ongoing debate

Individuals with elevated triglycerides or low HDL-C manifest greater elevations of LDL-P concentrations at a given level of LDL-C

Journal of Clinical Lipidology 2011; 5:338-367

Lipoprotein-associated phospholipase A2 (Lp-PLA₂) and lipoprotein (a)

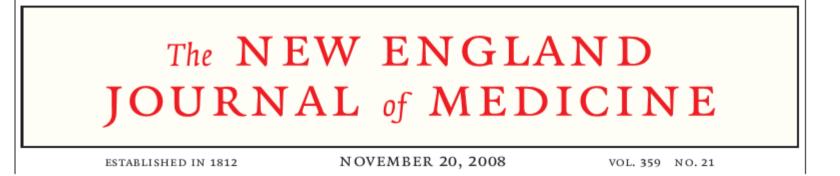
Lp-LPA₂

 Inflammatory biomarker linked to plaque inflammation and rupture

History of vascular disease*	Number of participants	Number of events	RR (95% CI)
A Lp-PLA ₂ activity			44. U.	
Coronary heart disease: 12 studies	t			
No history	16145	1534		1.03 (0.95-1.12)
Stable disease	24976	2429		1.17 (1.09-1.27)
Overall	41121	3963	-0-	1.10 (1.05-1.16)
Ischemic stroke: 4 studies [†]			8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
No history	8663	456		1-01 (0-71-1-43)
Stable disease	17437	673 -		1.17 (0.78-1.76)
Overall	26100	1129	+	1.08 (0.97-1.20)
Vascular death: 9 studies		(h)(h)(h)	1022	
No history	13143	459		1-05 (0-93-1-19)
Stable disease	24962	2230		1-21 (1-12-1-30)
Overall	38105	2689	-0	1.16 (1.09-1.24)
Non-vascular death: 8 studies			100	
No history	13143	1201		1-07 (0-93-1-24)
Stable disease	23941	1594	_	1-15 (1-02-1-31)
Overall	37084	2795	-0	1.10 (1.04-1.17)

Lipoprotein(a) Multivariable adjusted Participants Events Percentile mg/dL (no). (no). >117 >95th 376 46 90th-95th 77-117 46 450 67th-89th 30-76 1731 155 22nd-66th 5-29 3385 241 <22nd [reference] <5 104 1582 P<0.001 0.8 1 2

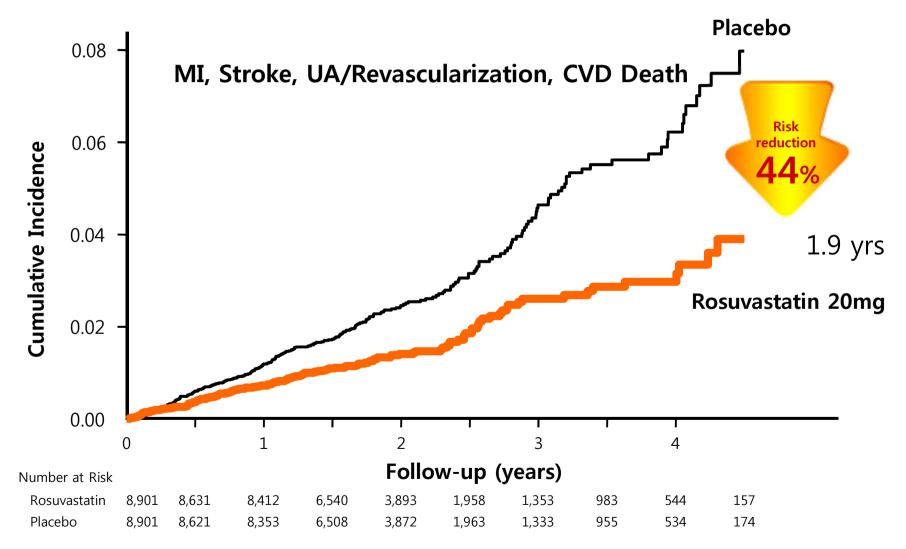
Journal of Clinical Lipidology 2011; 5:338-367


HR (95% CI)

Lp(a)

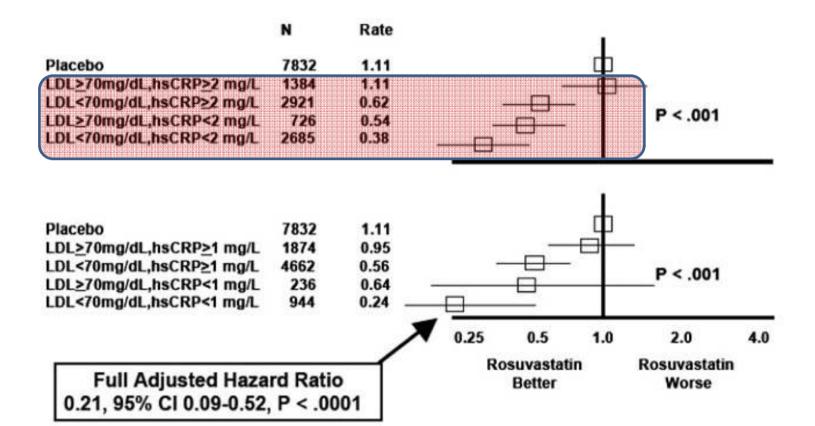
• Interfere with conversion of plasminogen to plasmin

CRP: JUPITER Study



Rosuvastatin to Prevent Vascular Events in Men and Women with Elevated C-Reactive Protein

- Patients with low to normal levels of LDL-C <130 mg/dL
- At increased CV risk: CRP ≥2.0 mg/L
- either rosuvastatin 20 mg or placebo
- Outcome: major cardiovascular event
- N= 17,802



N Engl J Med 2009; 361:2113-22

CV events by on-treatment levels of LDL-C and hsCRP

Key questions about these non-traditional risk markers?

- Should these markers be included in the risk prediction model?
- Should these markers be targets for therapy?

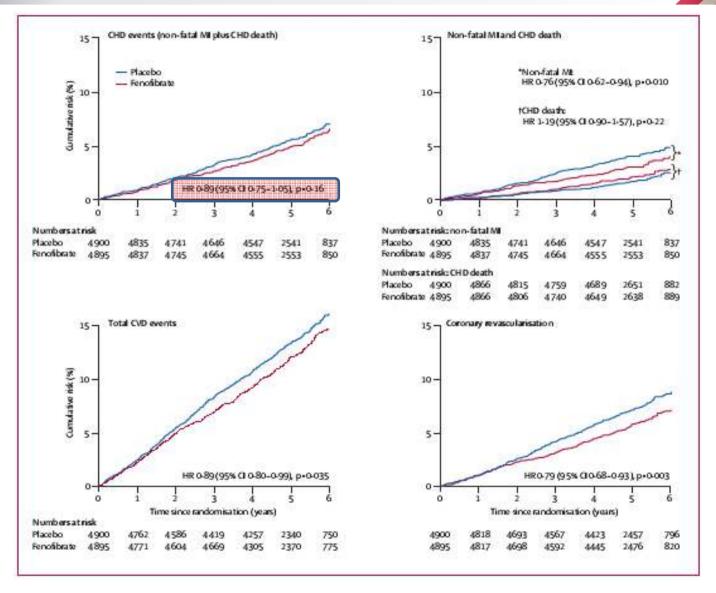
	Initial Clinical Assessment					
	CRP	Lp-PLA ₂	Apo B	LDL-P	Lp(a)	HDL or LDL Subfractions
Low risk (<5% 10-year CHD event risk)	Not recommended	Not recommended	Not recommended	Not recommended	Not recommended	Not recommended
Intermediate risk (5-20% 10-year CHD event risk)	Recommended for routine measurement	Consider for selected patients	Reasonable for many patients	Reasonable for many patients	Consider for selected patients	Not recommended
CHD or CHD Equivalent	Consider for selected patients	Consider for selected patients	Consider for selected patients	Consider for selected patients	Consider for selected patients	Not recommended
Family History	Reasonable for many patients	Consider for selected patients	Reasonable for many patients	Reasonable for many patients	Reasonable for many patients	Not-recommended
Recurrent Events	Reasonable for many patients	Consider for selected patients	Reasonable for many patients	Reasonable for many patients	Reasonable for many patients	Not recommended

	On-Treatment Management Decisions					
	CRP	Lp-PLA ₂	Аро В	LDL-P	Lp(a)	HDL or LDL Subfractions
Low risk (<5% 10-year CHD event risk)	Not recommended	Not recommended	Not recommended	Not recommended	Not recommended	Not recommended
Intermediate risk (5-20% 10-year CHD event risk)	Reasonable for many patients	Not recommended	Reasonable for many patients	Reasonable for many patients	Not recommended	Not recommended
CHD or CHD Equivalent	Reasonable for many patients	Not recommended	Reasonable for many patients	Reasonable for many patients	Consider for selected patients	Not recommended
Family History	Consider for selected patients	Not recommended	Consider for selected patients	Consider for selected patients	Consider for selected patients	Not recommended
Recurrent Events	Reasonable for many patients	Not recommended	Reasonable for many patients	Reasonable for many patients	Consider for selected patients	Not recommende

Issues for ATP IV

- LDL-C goals for primary and secondary
 prevention
- CVD risk assessment
- Alternative treatment targets:
 - Apo B, non HDL-C,LDL particle number, Lp-PLA2, Lp(a), hsCRP
- Direct targeting of HDL-C and triglyceride
 - Role of fibrates, niacin, omega-3 fatty acid

Effect of fibrate


Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial

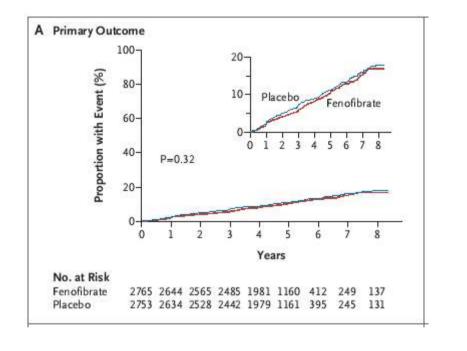
The FIELD study investigators*

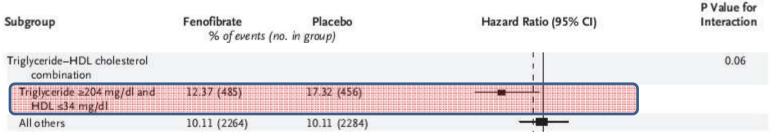
- Type 2 DM, who are not taking statin therapy (N=9795)
- Micronized fenofibrate 200mg/d vs. placebo
- Primary outcome: coronary events

Fenofibrate did not reduce the risk of the coronary events

Lancet 2005; 366: 1849-61

ACCORD Study




Effects of Combination Lipid Therapy in Type 2 Diabetes Mellitus

The ACCORD Study Group*

- Type 2 DM, who are being treated with simvastatin (N=5518)
- Fenofibrate 160 mg/d vs. placebo
- Primary outcome: major CV events

The combination of fenofibrate and simvastatin did not reduce the rate of CVD

N Engl J Med 2010; 362: 1563-74

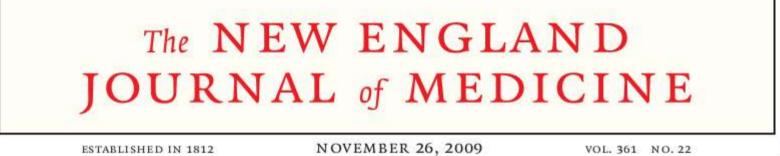
KOREA

KOREA UNIVERSITY

Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis

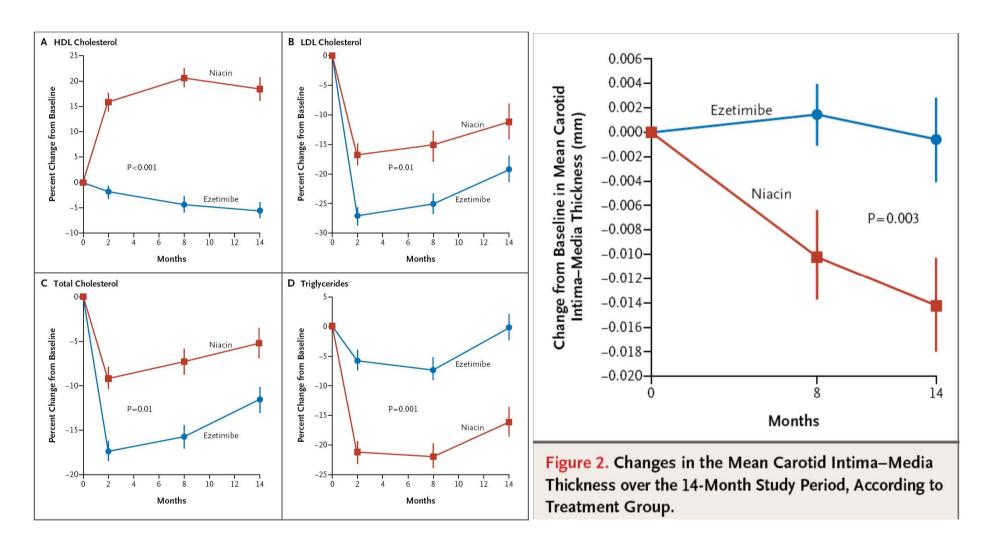
7	Studies included	Relative risk (95% CI)
Composite cardiovascular event	12, 16-18, 25	> 0·90 (0·82–1·00); p=0·048 P=47·0%, p for heterogeneity=0·110
Coronary event	8, 12, 16-20, 22-30	0·87 (0·81–0·93); p<0·0001 P=22·1%, p for heterogeneity=0·202
Non-fatal coronary events	8, 12, 16, 17, 19, 23-26, 31	0·81 (0·75-0·89); p<0·0001 I?=14·5%; p for heterogeneity=0·310
All-cause mortality	6, 8, 12, 16–27, 30	1.00 (0.93–1.08); p=0.918 I²=19.4%, p for heterogeneity=0.237
Cardiac death	8, 12, 16, 17, 19, 20, 23-26, 29-31	> 0.93 (0.85-1.02); p=0.116 I²=0.0%, p for heterogeneity=0.444
Cardiovascular death	12, 16, 24, 25, 30, 31 <	0.97 (0.88–1.07); p=0.587 P=0.0%, p for heterogeneity=0.581
Sudden death	19, 20, 23, 24, 26	>> 0.89 (0.74–1.06); p=0.190 I²=2.6%, p for heterogeneity=0.392
Non-vascular death	8, 12, 16, 17, 23-26, 30, 31	1.10 (0.995-1.21); p=0.063 P=0.0%, p for heterogeneity=0.616
lotal stroke	6, 12, 16, 17, 23-25, 31 -	1.03 (0.91–1.16); p=0.687 I ² =25.9%, p for heterogeneity=0.222
Coronary revascularisation	16, 17, 22, 23	> 0.88 (0.78–0.98); p=0.025 I²=36.3%, p for heterogeneity=0.194
leart failure	12, 17, 25	0.94 (0.65–1.37); p=0.759 P=72.6%, p for heterogeneity=0.026
Progression of abuminuria	12, 16, 32	> 0.86 (0.75-0.98); p=0.028 P=64.9%; p for heterogeneity=0.05
Retinopathy	21, 33	0·63 (0·49-0·81); p<0·0001 P=41·5%, p for heterogeneity=0·191
	0.5	1 1.5
	Favours fibrate Relative risk (Favours placebo

Lancet 2010; 375: 1875-84


학교 VERSITY

Comparison of ACCORD subgroup results with those from prior fibrate studies

Trial (Drug)	Primary Endpoint: Entire Cohort (P-value)	Lipid Subgroup Criterion	Primary Endpoint: Subgroup	
HHS (Gemfibrozil)	-34% (0.02)	TG > 200 mg/dl LDL-C/HDL-C > 5.0	-71%	
BIP (Bezafibrate)	-7.3% (0.24)	$TG \ge 200 \text{ mg/dl}$	-39.5%	
FIELD (Fenofibrate)	-11% (0.16)	$\begin{array}{l} TG \geq 204 \ mg/dl \\ HDL-C < 42 \\ mg/dl \end{array}$	-27%	
ACCORD (Fenofibrate)	-8% (0.32)	$\begin{array}{l} TG \geq 204 \ mg/dl \\ HDL-C \leq 34 \\ mg/dl \end{array}$	-31%	



Extended-Release Niacin or Ezetimibe and Carotid Intima–Media Thickness

- CHD or CHD equivalent who were receiving long-term statin therapy
- LDL<100 mg/dl, HDL <50 mg/dl (men), <55 mg/dl (women)
- ER niacin (2000 mg/d) vs. ezetimibe (10 mg/d)
- Outcome: change in carotid intima-media thickness
- N=208

Niacin casues a significant regression of carotid IMT KOREA UNIVERSITY

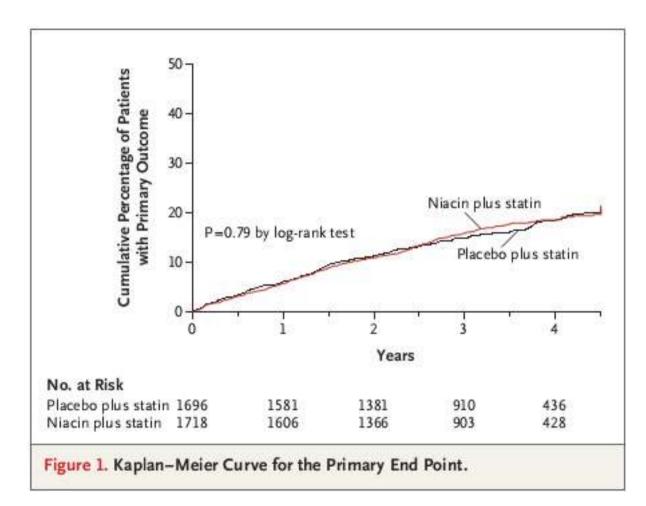
KOREA

Naicin: AIM-HIGH Trial

ESTABLISHED IN 1812

DECEMBER 15, 2011

VOL. 365 NO. 24


Niacin in Patients with Low HDL Cholesterol Levels Receiving Intensive Statin Therapy

The AIM-HIGH Investigators*

- Established CVD
- All patients received simvastatin to maintain LDL-C 40~80 mg/dl
- ER niacin 1500~2000 mg vs. placebo
- HDL:35->42, Tg 164->122, LDL: 74->62 mg/dl

N Engl J Med 2011; 365:2255-67

No incremental benefit from the addition of niacin to statin therapy

N Engl J Med 2011; 365:2255-67

KOREA

KOREA UNIVERSITY

On-going Non-statin based Lipid Trials

- Ezetimibe –IMPROVE-IT
- Niacin HPS2-THRIVE
- Omega 3 F.A. ASCEND, SU.FOL.OM3
- CETP inhibitor Dal-OUTCOME (Dalceptrapib), REVEAL (anacetrapib) trial

The evidence base for drugs that target other lipid fractions is significantly less robust than that for statin therapy

Current status of new ATP IV guideline

Health Funding Clinical Training Educational News About Public Professionals Networks & Research Trials & Careers Researchers Campaigns & Resources **NHLBI**

Home » Clinical Practice Guidelines

Clinical Practice Guidelines

About Guidelines

Current Guidelines and Reports

Guidelines in Development

Guideline Archive

Expert Panel Members

.

٠

Clinical Practice Guidelines and Reports In Development <u>Cardiovascular Disease Risk Reduction in Adults</u> The NHLBI is currently sponsoring the development of reports with recommendations

The NHLBI is currently sponsoring the development of reports with recommendations for clinical practice on reducing cardiovascular risk in adults. Three expert panels and two work groups are writing the following reports:

Managing Blood Cholesterol in Adults: Report from the Adult Treatment Panel (ATP)

- Managing Blood Pressure in Adults: Report from the Joint National Committee (JNC)
- Managing Overweight and Obesity in Adults: Report from the Obesity Expert Panel
- Assessing Cardiovascular Risk: Report from the Risk Assessment Work Group
- Lifestyle Recommendations to Reduce Cardiovascular Risk: Report from the Lifestyle Work Group

The following table reflects the status of each report and progress through the remaining stages of the review process before the guidelines are released.

	Draft Finished	Federal Review	Expert Review	Advisory Council	HHS Clearance	Release
Lifestyle	Completed	Completed	Completed	In Progress		
Risk Assessment		Completed	Completed			
Cholesterol	Completed	Completed	Completed	In Progress		
Blood Pressure	In Progress					
Obesity	In Progress					

Draft Completed: Expert panelists have completed a full draft of the systematic review and recommendations.

 Federal Review: Federal agency representatives of the NHLBI's National Program to Reduce Cardiovascular Risk (NPRCR) coordinating committee provide review and comment.

. Expart Baylow: External poor ravioware with expertise in the relevant rick factore provide raviow and

Health topics on this page: <u>Clinical</u> <u>Practice</u> <u>Guidelines</u>

Thursday, November 08, 2012

KOREA

KOREA UNIVERSITY

Related Links Join the Health Information Network List of Publications Information Center

Predictions for ATP IV

- LDL –C goal for primary and secondary prevention may be intensified
- CVD risk assessment may be updated
- Support for LDL-C targeted therapy, but further emphasis on non-HDL and apoB
- Role of novel risk markers
- Tempered recommendations for combination lipidlowering medications
- Specific recommendations on certain sub-populations (diabetes, kidney disease, elderly)

Thank you for your attention!

KOREA

Some day in 2012...

